

Radiomics: methods and general applications

Evis Sala, MD, PhD, FRCR, FRCP

Disclosures

- Co-founder and shareholder, Lucida Medical
- Research support, GEHC, Canon
- Speakers' bureau, GEHC, Canon

Radiomics Research

Number of human radiomics studies[†] per PubMed publication year for **oncological** studies

McCague C ... Sala E, Woitek R 2022 Clin Rad

What does a radiologist do?

https://www.rcr.ac.uk/discover-and-explore/discover-radiology/what-does-clinical-radiologist-do

Do we capture all the information available on images? Mammography

Radiomics - Quantitative Features

etc ...

doi:10.1371/journal.pntd.0004356.t001

Examples of handcrafted features

etc ...

A bit of (art) history

Entropy (Randomness)

a-e) Jackson Pollock

f) Mark Rothko

Sigaki et al. 2018 PNAS

Entropy – "randomness" of pixels

Courtesy of Prof Ramona Woitek

Radiomics to distinguish between intrinsic subtypes

Luminal B cancers have distinct radiomic signatures:

- luminal B vs. luminal A, 84.2%
- luminal B vs. triple negative, 83.9%
- luminal B vs. all others, 89%

Radiogenomics

Understanding relationship between radiomics (imaging phenotype) and genomics (transcriptomics)

Importance of heterogeneity in HGSOC

High Grade Serous Ovarian Cancer (HGSOC)

Highest mortality of all gynaecological malignancies

5-year overall survival rate: 20–40% FIGO III & 10-18% FIGO IV ~75% diagnosed at advanced stages (multi-site metastatic disease)

Genomic heterogeneity

Metastases in different sites harbor different **resistance mechanisms**

Neoadjuvant chemotherapy (NACT) + delayed primary surgery (DPS)

 \rightarrow Can we predict response to NACT?

Nick et al. Nat Rev Clin Oncol 2015 Winter et al. JCO 2008 Nougaret Radiographics 2012

Vergote et al. NEJM 2010 Kehoe et al. Lancet 2015 Coward et al. Int J Womens Health 2015 McPherson et al. Nat Genet 2016

Inter-lesion Heterogeneity

GLCM Grey level coocurrence matrix

 2^{nd} order/ texture features computed for each voxel inside lesion Pairwise similarities computed for all sites \rightarrow Inter-Site Similarity Matrix

69 months OS Complete resection Mesenchymal subtype

10 months OS Incomplete resection Mesenchymal subtype

Vargas et al. Eur Radiol 2017

Spatial Radiomics: Habitats

Targeted approach: radiomic maps + multiple targeted biopsies

Radiomic-pathologic-molecular Correlation

- Customised **3D-printed tumour moulds** for targeted tissue sampling
- **US-fusion biopsies** (overlay of radiomic habitats from CT during US-guided biopsies)

P. Martin-Gonzalez, MCO, et al., Insights into Imaging 2020

US-fusion biopsies

Targeted tissue characterisation

Beer L et al. Eur Radiol 2020

Work in collaboration with Canon Medical Systems

3D-printed tumour moulds

Segmentation of the tumour(s) + Delineation of the optimal base

1. Tissue subsegmentation and extraction of the radiomic habitats 2. 3D tumour volume rendering and

postprocessing

3. Rotation

4. Mould modelling

Delgado-Ortet et al. 26th Medical Imaging Understanding and Analysis (MIUA) Conference 2022

3D-printed tumour moulds

Delgado-Ortet et al. 26th Medical Imaging Understanding and Analysis (MIUA) Conference 2022

3D-printed tumour moulds

Multiparametric imaging

Weigelt et al. 2019 JCO Precision Oncology

Radiogenomic response predictor for HGSOC

Patient cohort (n=138)

Crispin-Ortuzar M & Woitek R et al. under review Nat Comms

Predict response to neoadjuvant chemotherapy (NACT) [change in tumour volume] from baseline scans

Manual segmentations of whole tumour burden

Radiogenomic response predictor for HGSOC

Data integration improves response prediction

Clinical data, CA 125, radiomics, and ctDNA with external validation

Crispin-Ortuzar M & Woitek R et al. under review Nat Comms

Lesser sac lesion

Automated segmentation Automated sub-segmentation

Buddenkotte et al. 2022 (manuscript under review)

L. Rundo et al. 2020 Computers in Biology and Medicine

Radiogenomics for patient stratification

Patient stratification based on multiomics

• CT

h

- H&E tissue sections (dig. Pathology)
- HRD/HRP (NGS)

Adnexal radiomics 1.0 - Higher risk (n = 24) Lower risk (n = 16)

Omental radiomics

Multimodal data (incl. omental radiomics)

Boehm et al. Nat Cancer 2022

Vision (next 5 years)

Develop integrated frameworks for cancer that bridge the gap between imaging and cellular scales (research line 1), predict response to treatment (research line 2), and engage interactively with patients and clinicians (research line 3)

THANK YOU

ICER CAMBRIDGE EARCH CENTRE

Molecular Signatures

Ramona Woitek Lonardo Rundo Stephan Ursprung Lucian Beer Vlad Bura Cathal McCague Lorena Escudero Maria Delgado-Ortet Thomas Buddenkotte Mireia Crispin-Ortuzar Paula Martin-Gonzales Marika Reinus Gabriel Funningana James Brenton Carola Bibiane-Schoenlieb Roxana Pintican Hilal Sahin Helen Addley/Sue Freeman

PDTXs

Delivering a New Paradigm for Personalised Cancer Medicine

eMR & EPIC

Imaging & Digital Pathology

Al/Deep Learning